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A two-phase supersonic jet issuing into a cotraveling flow is considered. The 
spatial distributions and temperature fields of the solid and liquid phases are 
investigated, taking account of the shock-wave structure of the underexpanded 
jet. 

Formulation of the Problem 

In a supersonic gas jet issuing from a Laval's nozzle, solid or liquid particles of size 
oscillating within the range from fractions of a micron to tens of microns may be present. The 
distribution of these particles in space and their characteristics depend strongly on the 
struc~ture of the initial section of the jet; with increase in particle concentration, they 
themselves begin to influence the parameters of the gas close to the nozzle outlet and the 
geometry of the first "barrel." 

The structure of two-phase flows in both nozzles and jets has been investigated, in par- 
ticular, in [1-4], where the highly impressive methods of continuous calculation were used 
to calculate the flow parameters. The calculation scheme of the method of [5] is somewhat 
modified here in order to model the behavior of particles in the jet in a wide range of the 
parameters, explicitly separating the flow tubes in which no density discontinuities appear 
and those including the density discontinuities themselves. 

The problem reduces to integration of the system of equations describing the motion and 
interaction of an ideal gas and a model "gas of particles"; the pressure in the latter is as- 
sumed to be zero. In particular, for an axisymmetric jet, the system of equations takes the 
form 

._~z(Oiu~) + _~r(Pivi)+ Oiv~ = 0 ,  r 
0 (p~u~+6~p) + 0 piuivl 

O---i -~r (p~u~v~) + r = / ( u ~ - - u 3 ,  

0 (p~u~v~)+ 0 , v 2 o~v~ 
Oz --~/-r~p.~ +6~p)+ - - = f ( v j - - v ~ ) , r  

(1) 

0 (u~e3+ 0 v~e~ 
Oz ~(v~ei) 4- r = g (T*  - -  T* )  + ~xif [(uj - -  ui) ui + (vj - -  vi) vii. 

Here i = i, 2 for the gas and particles, respectively; T~ = T: + [(u: -- u=) = + (v: -- v2)2]/ 
2 2Cp, T~ = T~, e i = g i + 6~i( p + pi(ui + v~)/2), E i is the internal energy of unit mass of 

each phase. 

The empirical coefficients f and g describing the momentum and energy transfer, respec- 
tively, between the phases are taken from [6]. 
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N u m e r i c a l  Scheme 

The sy s t e m in  Eq. (1) i s  i n t e g r a t e d  i n  an E u l e r  c a l c u l a t i o n  g r i d  w i t h  a number o f  c e l l s  
which  v a r i e s  f rom l ayer  to l a y e r .  T h i s  g r i d  i s  c o n s t r u c t e d  as  f o l l o w s :  t h e  f l o w  f i e l d  i s  s u c -  
c e s s i v e l y  c u t  i n t o  l a y e r s  by p l a n e s  p e r p e n d i c u l a r  to  t h e  j e t  a x i s ;  t h e  l a y e s ,  in  t u r n ,  a r e  
divided into cells at the points of intersection of the planes bounding them with flow tubes 
and the density discontinuities. The angle of rotation of the boundary of the flow tube in 
each subsequent step (layer) is found from the solution of the problem of the interaction 
between two semiinfinite ideal-gas flows over some unknown path [5]. This angle is evi- 
dently determined by equality of the pressures on both sides of the contact boundary: the 

OU~ in 
maximum possible angles of rotation of the boundaries 8max and 8max are found at first, and 
then the desired angle B is found by successive halving of the sector obtained in the direc- 
tion minimizing the modulus of the pressure difference on the two sides of the boundary. 

So as to be specific, consider the lower flux (for the upper, all the angles are taken 
with the opposite sign), for which the angle of rotation of the gas is 8_ = arctan (v/u) -- 4. 
If B < 0, the pressure at the given side of the boundary is determinedPfrom the formula for 
an e~panding semiinfinite supersonic flow, i.e., for a Prandtl--Maler flow,- if 8 n > 0, however, 
the pressure at the boundary is found from the solution of the problem of symmetric superson- 
ic flow around a wedge with a vertex angle X = 28_ [7]. In the latter case, as is known, the 
flow undergoes a discontinuity: a sloping densityPdiscontinuity appears, forming the wall of 
a new cell together with the boundaries of the flow tubes, within the framework of the given 
scheme. The angle of rotation of this discontinuity with respect to the jet axis is related 
in a known manner to the angle of slope of the contact discontinuity, and the hydrodynamic pa- 
rameters behind the discontinuity are determined from the continuity laws at the sloping dis- 
continuity. Such explicit separation of the discontinuities is physically justified, since it 
permits more correct separation of the fast processes -- viscosity and heat conduction -- deter- 
mining the thickness of the discontinuities and theslow processes associated with phase inter- 
action. Within the framework of theideal-gas model used here, the discontinuity is regarded 
as infinitesimally thin, and since the numerical scheme applied does not spread it over sever- 
al cells, there is no need to calculate flow tubes with large gradients of gasdynamic parame- 
ters. This ultimately gives the possibility of achieving satisfactory accuracy even when the 
jet itself and the cotraveling flow from the contact boundary to the region of unperturbed 
flow are represented by 20-30 flow tubes. 

The difference equations corresponding to integral conservation laws with exchange terms 
for an individual calculation cell take the form 

(p iu ihr)  n = (piuihr)n. -~- SX+l - -  sx __ (p iv ihzhr / r )n  , 

((p~u~ + 8~p) h~) ~ = ((p~u~ + 6~p) h~),~ + ~ (h~p~).+~ - -  ~ (h~p �9 ) .  + 

-~- ( ux SX )n+l - -  ( ux  sx )n - -  (PiUiVihzhr/r)n - -  (hzhr~ ( u j  - -  u~))~, (2) 

(p iu iv ihr)n  = (9iuivihr),~ .q_ 5 l i b  z (pX _ p X §  ) + (vx sx )n+l  - -  ( vx sX )n - -  (9iv~ hzhr/r) , ,  - -  (hzhr[  (v j  - -  v~))~, 

(eiuih~) n -= (e~uih~)~ -F  (s ~ e ~/px )~+1 - -  ( sx ex/pX )~ _ (e iv ihzh~/r )  ~ _ 

- -  [ h ~ h ~  ( g  ( T *  - -  T * )  q -  5 ~ f  ((u~ - -  u O  u~ -1- (v~ - -  v i )  vO)],~. 

Here the subscript numbers the parameters when z ffi zo, and the superscripts number those when 
�9 �9 �9 �9 X X X X X X X X X 

z = zo + hz; inaddltlon, the symbols Pk' Uk, v , e , 0k and s k = 0k(U~h_~ - v~ht)~ denote parame- 
ters at the lower (k = n) and upper (k = n + i~ wa~is of the given cell. Since the particle 
parameters are determined in the same calculation grid as the gas parameters, strong numeri- 
cal diffusion may appear at the edge of the region occupied by the particles. For its sup- 
pression, additional special cells are created at the edges of particle fields of each type; 
the upper walls of these cells are so-called separatrices: lines bounding the region of ac- 
tual two-phase flow. 

As well as the standard stability conditions for such explicit difference schemes [8], 
which for the given scheme must be formulated for both the gas and solid phase and imposed 
on the step along the Jet axis, at least one other condition must be taken into account here: 
the longitudinal step must be less than the characteristic length for phase interaction (L = 
0~ux/f). In practice, however, the step is chosen~to be even smaller, as a result of the re- 
quirements imposed on the accuracy of the specific calculations. 
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Discussion of the Results 

The above numerical scheme is realized in a program which is used for numerous calcula- 
tions in the following~parameter ranges: the underexpansion varies from 0.i to 106 and in some 
variants jet flow into vacuum is considered, with variation in the Math number of the jet and 
the cotraveling flow in the range 2-7.5. The solid phase is taken to be AIa03 particles of 
size 0.5-12 um, and the mass flow rate is no more than 40% of the total mass of flow products. 
The initial parameters of the Jet are specified either at the outlet or in the critical cross 
section of a Laval nozzle; in the second case, the calculation begins in the nozzle, and the 
particles may leave it in both molten and solid form. The concentration of liquid and solid 
phases in the particles is calculated from the law of energy conservation of the whole gas- 
particle system, disregarding the crystallization kinetics of AIa03. 

The interaction of particles with gas in a supersonic underexpanded jet issuing into a 
cotraveling flow may be represented qualitatively as follows. On leaving the nozzle, the gas- 
entrained particles turn by some characteristic angle at a distance of a few diameters from 
the nozzle outlet; this angle may be estimated within the framework of the method of plane 
cross sections [9]. Assuming that the longitudinal components of the gas and particle veloci- 
ties do not vary greatly and are approximately equal, the following approximate equation is 
written for the separatrix of particles of radius R 

4 j~R3po d~r 1 ( v  dr) 2 
- 3  d z  ~ - 2 c ~ 9 ~ R  ~ , ( 3 )  u dz, 

with initial conditions specified in the cross section z = 0 

dr 
r = ro, - 0. ( 4 )  

dz 

Using the approximation proposed in [i0] to describe the density and radial velocity of the 
gas in the jet in the region under the suspended discontinuity, and taking into account that 
the maximum angle of slope of the separatrlx is approximately equal to its angle of slope with 
respect to the jet axis in the cross section where the particles are in the so-called central 
discharge wave, it is found that 

tg  0 -~. plro G , ( 5 )  

Po RM (~ + 1) 

where R is the particle radius, ~m; G is a constant~ equal to 0.8,10 ~ in the present case. 
As is evident from Fig. i, this estimate is perfectly acceptable in the given range of parame- 
ters. 

After turning through the given angle, the particles continue to move in an approximately 
constant direction and intersect the suspended density discontinuity close to the edge of the 
jet. The interaction increases somewhat here, and the particles, gradually turning and being 
decelerated by the gas, begin to collect in a characteristic annular spatial structure. The 
impact layer of gas, in turn, obtains some additional momentum from the direction of the jet 
axis and the first "barrel" is delayed in comparison with the case of pure gas. The deceler- 
ation effect is much intensified beyond the boundaries of the jet in the cotraveling flow, and 
here the tendency of the basic mass of particles to concentrate at the periphery appears most 
strongly: the particles move, as it were, in a "collecting lens of gas, with a transverse 
velocity considerably less than that of the particles themselves. As a result, the spatial 
structure shown in Fig. 2a is formed. Here the axis of the two-phase jet issuing with M = 3 
and underexpansion n = 20 in a cotraveling flow with Math number M = 2 is directed from left 
to right, and the particles are distributed uniformly at the nozzle outlet. 

The initial "spreading" of the particles over the jet and the annular structure obtained 
are clearly evident in Fig. 2a. Some nonmonotoniclty in the region close to the nozzle outlet 
is evidently explained by interaction with the concentrated material beyond the suspended dis- 
continuity. The particle temperature rapidly falls at first in the region under the suspended 
discontinuity (Fig. 2b). In strongly underexpanded jets and in jets issuing into vacuum, the 
phase interaction ultimately falls so much that "freezing" of the particle temperature occurs. 
In jets where the underexpansion is not especially large (n = 5-15), "freezing" does not set 
in as a rule, and in addition, particles moving at large angles to the axis are heated for 
some limited time on reaching a region of dense cotraveling flow, where the longitudinal veloc- 
ity of the gas undergoes a sharp discontinuity. For the sake of clarity, the jet and particle 
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Fig. i. Dependence of the slope of the separatrlx with respect 
to the jet axis on the particle radius R, ~m, the Mach number 
of the jet at the outlet M, and the adiabatic modulus of the gas 
7 obtained in numerical modeling (continuous curves) and from Eq. 
(5) (dashed curves~: i) 7 = 1.2, M = 2; 2) 1.3, 3; 3) 1.4, 5, 

Fig. 2. Spatial distribution of the density 
(a) and temperature field (b) of the particles 
in a supersonic underexpanded jet issuing into 
a cotraveling flow. 

parameters are chosen (underexpanslon of the Jet n = 15, initial gas temperature T = 2000~ 
Mach number of jet M = 4.5, Mach number of cotraveling flow M = 2, particle radius R = 4 ~m~ 
so that the particles are not only heated on deceleration in the cotraveling flow to the melt- 
ing point but also begin to melt; in Fig. 2b, this corresponds to two "peaks." Then the 
particles again solidify and rapidly cool. 

Note, in conclusion, that this nonmonotonicity in the behavior of the density of the 
particle's spatial distribution and their temperature fields may be observed experimentally, 
in particular, in investigating light scattering at particles. 
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NOTATION 

Pi' ui' v~, El, density, velocity components along the z and r axes, and internal energy 
of i-th phase,-respectively; p, gas pressure; cc ~, specific heat of gas at constant pressure; 
R, particle radius; O, angle of rotation of particle separatrix; CD, drag coefficient of spher- 
ical particle; po, density of particle material;i ro, nozzle radius, m; T, adiabatic modulus; 
n, underexpansion of nozzle; 0 x, u x, v x, pX gas parameters at side wall of cell; fi_, angle 
of rotation of side wall of cell with respect to axis; M, mach number of jet or cot~aveling 
flow. 
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REGULAR AND STOCHASTIC DYNAMICS OF PARTICLES DURING VORTEX GENERATION 

IN A ROTATING STREAM WITH SHEAR 

E. V. Gus!yakova and A. A. Solov'ev UDC 532.517.4 

The results of an experimental study of the initial stage of development of a con- 
centrated vortex are given. 

Many practical problems of thermophysics and hydrodynamics require knowledge of the laws 
of organization of motions in vortex formations [i, 2]. There are a number of ways of excit- 
ing vortices [3], but it still remains unclear what physical processes occur in the initial 
stages of their formation. The mechanism of formation of concentrated vorticity in the pres- 
ence of a trigger disturbance is well known [3]. During the further evolution of the initial 
disturbance and its conversion into a vortex, the character of the particle motion remains 
regular. A generation mechanism of an entirely different type, when a concentration of vorti- 
city arises from random motions of particles, is possible in principle [4-7]. This regime of 
excitation of vortex formations has hardly been studied. 

An installation was built to obtain and investigate vortices: a rotating cylindrical 
chamber, the flat bottom of which consists of a disk and two concentric rings [8]. The diame- 
ter of the installation is 0.46 m. The disk has a radius of 0.1 m, while the middle and 
outer rings have widths of 0.i and 0.03 m, respectively. Water, rotating together with the 
vessel, fills it to a depth of 0.025 m. The liquid is subjected to the action of two opposite 
flows. They are created by clockwise rota~tion of the disk and counterclockwise rotation of 
both rings. The rings rotate at the same ~elocity, different from the velocity of the disk. 
The vessel as a whole rotates at the same velocity and in the same direction as the disk. The 
sign of rotation of the ring s is arbitrarily taken as negative. The motions at the surface 
of the liquid were made visible by light scattering from mlcr<~partlcles moving along with the 
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